

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 3259-3261

Easy access to β-halo amino esters and aziridine 2-carboxylic esters from halohydrins

Saïd Boukhris* and Abdelaziz Souizi

Laboratoire de Synthèse Organique et d'Agrochimie, Département de Chimie, Faculté des Sciences, Université Ibn Tofaïl, BP 133 Kénitra, Morocco

Received 9 January 2003; revised 28 February 2003; accepted 6 March 2003

Abstract—The halohydrins prepared from epoxide esters, were treated with hydroxylamine derivatives. In subsequent reaction with NaOH/ K_2 CO₃/Bu₄NHSO₄ the *N*-protected β-halo α-aminoesters thus obtained were converted into *N*-hydroxy ariridine 2-carboxylic esters in good yields. © 2003 Elsevier Science Ltd. All rights reserved.

Aziridines are useful chiral building blocks for the synthesis of modified amino acids1 and nitrogen-containing functional compounds via ring opening and ring expansion reactions.²⁻⁴ They are also found in some natural products as well as biologically active compounds such as mitomycins and azinomycins.^{3,5} In addition, aziridines have also found applications as chiral auxiliaries1 and lately as chiral ligands in asymmetric catalysis.3b However, the aziridine 2-carboxylic acids (esters) represent an interesting class of compounds since they may be considered simultaneously as α- or β-amino acid derivatives. Although a variety of routes leading to aziridines have been developed to date,6 little attention has been devoted so far to these carboxylic acids. A commonly used strategy for the synthesis of these compounds involves the so-called Gabriel-Cromwell reaction of 2,3-dihalopropionic (or 2-bromo acrylic) acid derivatives with primary amines.⁷ Moreover, stereo-controlled synthetic access to this class of compounds is generally restricted to dehydrative ring closure of β-hydroxy α-amino acid derivatives⁸ or double SN₂ displacement of oxirane-carboxylates with an ammonia equivalent.9

In connection with a research program aimed at the synthesis of new α -amino acids, we discovered a simple and general route for the preparation of N-hydroxy α -amino esters 2 starting from the corresponding halohydrins 1.10 These latter are readily accessible in regioselective form, employing the ring opening reaction of epoxide esters.11

Indeed, a substantial number of natural products containing one or more oxidized peptide bonds -C(O)-N(OH)- have been found in nature. These compounds act variously as potent growth factors, antibiotics, antibiotic antagonists or tumour inhibitors. 12 In addition, it has been suggested that $\emph{N}\text{-hydroxy}$ peptides play an important role in the biosynthesis of $\beta\text{-lactam}$ antibiotics. 13

When a variety of halohydrins 1 were treated with a mixture of hydroxylamine hydrochloride/sodium carbonate, good yields of β -halo α -amino esters 2 were generally obtained according to the Strecker-type reaction (Scheme 1). The typical laboratory procedure is outlined in Ref. 15. The yields of these reactions are collected in the Table 1.

In this letter we also report a convenient method for the synthesis of new *N*-hydroxy aziridine 2-cyano 2-carboxylic acids (esters) **3**. Although the synthetic method of aziridines are well documented, the method for the synthesis of *N*-hydroxy aziridine carboxylic acids are limited.

Our route to the aziridines 3 is shown in the Scheme 2, a key intermediate being the β -halo amino esters 2. The

Scheme 1.

^{*} Corresponding author. Fax: +21237372770; e-mail: nsboukhris@ yahoo.com

Substrate	Ar	\mathbb{R}^1	X	\mathbb{R}^2	Products (yield %, mp °C)
 1a	$4-MeC_6H_4$	Et	Cl	Н	2a (86, oil)
1b	$4-ClC_6H_4$	Et	Cl	Н	2b (88, oil)
lc	$4-NO_2C_6H_4$	Et	Cl	Н	2c (74, oil)
ld	C_6H_5	Et	Cl	H	2d (89, oil)
le	$4-MeC_6H_4$	Et	Br	H	2e (87, 123–4)
lf	$4-ClC_6H_4$	Et	Br	Н	2f (85, 112–3)
g	$4-\text{MeC}_6H_4$	Me	Cl	H	2g (90, 117–8)
l h	$4-ClC_6H_4$	Me	Cl	Н	2h (86, 114–5)
li	C_6H_5	Me	Cl	Н	2i (87, 111–2)
lj	$4-NO_{2}C_{6}H_{4}$	Me	Cl	H	2g (82, 130–1)
1k	$4-MeC_6H_4$	Me	Br	Н	2k (88, 132–3)
11	4-ClC ₆ H	Me	Br	H	21 (87, 154–5)
1m	$4-MeC_6H_4$	Et	Cl	Me	2m (86, oil)
ln	$4-MeC_6H_4$	Et	Br	Me	2n (85, oil)
lo	$4-MeC_6H_4$	Me	Cl	Me	2o (86, 142–3)
1p	$4-\text{MeC}_6\text{H}_4$	Me	Br	Me	2p (87, 167–8)

Table 1. Conversion of halohydrins 1 into β -halo α -amino esters 2

direct aziridination of the latter was then examined. We were not able to achieve practical yields of the aziridines 3 using the traditional procedure by treating the β -halo α -amino esters 2 with triethylamine. To circumvent this potential problem, we examined several other activating agents. A marginal improvement in the yield of aziridines was obtained using NaH, but a mixture of NaOH/K₂CO₃/Bu₄NHSO₄ proved to be the best agent.

Thus, β -halo α -amino esters 2 formed in excellent yields were subjected to cyclization in a solid-liquid two-phase system consisting of benzene and a mixture of solid powdered sodium hydroxide/potassium carbonate. The reaction proceeded smoothly at room temperature and in the presence of tetrabutylammonium hydrogen sulfate it was completed after 8 h affording aziridines 3^{16} in moderate yields (Scheme 2, Table 2).

Scheme 2.

Table 2. N-Hydroxy aziridines 3 prepared

Product	Ar	\mathbb{R}^1	\mathbb{R}^2	Yield (%)
3a	4-MeC ₆ H ₄	Me	Н	64
3b	$4-ClC_6H_4$	Me	Н	62
3c	$4-NO_2C_6H_4$	Me	H	60
3d	C_6H_5	Me	Н	58
3e	$4-MeC_6H_4$	Et	Н	65
3f	$4-ClC_6H_4$	Et	Н	63
3g	$4-NO_2C_6H_4$	Et	Н	62
3h	C_6H_5	Et	Н	60
3i	$4-MeC_6H_4$	Me	Me	64
3j	$4-ClC_6H_4$	Me	Me	62
3k	$4-MeC_6H_4$	Et	Me	62
31	4-ClC ₆ H ₄	Et	Me	64

^a Isolated yields, after flash chromatography on silica gel. Ethyl acetate/petroleum ether 3:2 as eluent.

It was found that in the absence of PTC catalyst cyclization is extremely slow, and far from completion after 24 h, at room temperature.

All aziridines 3 were characterized by satisfactory HRMS and by NMR spectroscopy. Only one regioisomer was obtained.

In conclusion, we have described a new convenient one-pot synthesis of N-hydroxy β -halo α -amino esters. We have also shown that the β -halo α -amino esters react in basic media to give N-hydroxy aziridine carboxylic acids (esters) which, at the moment, is limited to access. The easy removal of the N-hydroxy aziridines makes this method competitive with other direct aziridination procedures. Further studies of these reactions are under investigation.

References

- Baldwin, J. E.; Farthing, C. N.; Russell, A. T.; Schofield, C. J.; Spivey, A. C. *Tetrahedron Lett.* 1996, 37, 3761– 3764.
- For an excellent review see: Garner, P.; Dogan, O.; Pillai, S. *Tetrahedron Lett.* 1994, 35, 1653–1656 and references cited therein.
- (a) Deyrup, J. A. In *The Chemistry of Heterocyclic Compounds*; Hassner, A., Ed.; Wiley: New York, 1983; Vol. 42, pp. 1–124; (b) Padwa, A.; Woollhouse, A. D. In *Comprehensive Heterocyclic Chemistry*; Lwowski, W., Ed.; Pergamon: Oxford, 1984; Vol. 7, pp. 47–93; (c) Pearson, W. H.; Lion, B. W.; Bergmeier, S. C. In *Comprehensive Heterocyclic Chemistry II*; Padwa, A., Ed.; Pergamon: Oxford, 1996; Vol. 1A, pp. 1–60; (d) Rai, K. M. L.; Hassner, A. In *Comprehensive Heterocyclic Chemistry II*; Padwa, A., Ed.; Pergamon: Oxford, 1996; Vol. 1A, pp. 61–96.
- (a) Contrill, A. A.; Osborn, H. M. I.; Sweeney, J. B. *Tetrahedron* 1998, 54, 2181–2208; (b) Tanner, D.; Birgersson, C.; Dhaliwal, H. K. *Tetrahedron Lett.* 1990, 31, 1903–1906; (c) Bergmeir, C. S.; Seth, P. P. *Tetrahedron Lett.* 1995, 36, 3793–3796.
- 5. Kasai, M.; Kono, M. Synlett 1992, 778-790.

- 6. (a) Osowska-Pacewicka, K.; Zwierzak, A. Synthesis 1996, 333-335; (b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742-2753; (c) Södergren, M. J.; Alonso, D. A.; Bedekar, A. V.; Andersson, P. G. Tetrahedron Lett. 1997, 38, 6897-6900; (d) Osborn, H. M. I.; Contrill, A. A.; Sweeney, J. B. Tetrahedron Lett. 1994, 35, 3159–3162; (e) Franklin, A. D.; Ping, Z.; Chang-Hising, L.; Rajarathnam, E. R. Tetrahedron: Asymmetry 1995, 6, 1511–1514; (f) Legters, J.; Thijs, L.; Zwanenburg, B. Tetrahedron 1991, 47, 5287-5294; (g) Takeya, A.; Daisuke, K.; Satoski, M.; Ilhyang, R.; Mitsuo, K. Tetrahedron 1998, 54, 13485-13494; (h) Osborn, H. M. I.; Sweeney, J. B. Synlett 1994, 145-147; (i) Nishikori, H.; Katsuki, T. Tetrahedron Lett. 1996, 37, 9245–9248; (j) Pfister, J. R. Synthesis 1984, 969-970; (k) Osborn, H. M. I.; Sweeney, J. B. Tetrahedron: Asymmetry 1997, 8, 1693-1715 and references cited therein; (1) Takeya, A.; Satoski, M.; Ilhyang, R.; Mitsuo, K. Tetrahedron Lett. 1998, 39, 309-312; (m) Berry, M. B. S.; Craig, P. Synlett 1992, 41–44; (n) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Org. Chem. 1991, 56, 6744-6746; (o) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326-5327.
- Nagel, D. L.; Woller, P. B.; Cromwell, N. H. J. Org. Chem. 1971, 36, 3911–3917.
- (a) Kuyl-Yeheskiely, E.; Lodder, M.; Van Der Marel, G. A.; Van Boom, J. H. *Tetrahedron Lett.* 1992, 33, 3013–3016; (b) Häner, R.; Olan, B.; Seebach, D. *Helv. Chim. Acta* 1987, 70, 1676–1679; (c) Show, K. L.; Luly, J. R.; Rapoport, H. *J. Org. Chem.* 1985, 50, 4515–4517.
- 9. (a) Legters, J.; Thijs, L.; Zwanenburg, B. Recl. Trav. Chim. Pays-Bas 1992, 111, 1–4; (b) Tanner, D.; Birgersson, C.; Dhaliwal, J. K. Tetrahedron Lett. 1990, 31, 1903–1906.
- Oulad Yakhlef, A.; Boukhris, S.; Souizi, A.; Robert, A. Bull. Soc. Chim. Fr. 1997, 134, 111–113.
- Epoxide esters were prepared in a two-step procedure: for the first one, a Knoevenagel-Cope condensation, see: (a) Gardber, P. D.; Banddon, R. L. J. Org. Chem. 1957, 22, 1704–1710; (b) Texier-Boullet, F.; Foucaud, A. Tetrahedron Lett. 1982, 23, 4930–4937. For the second step, a stereospecific epoxidation of olefin by sodium hypochlorite, see: (c) Baudy, M.; Robert, A.; Foucaud, A. J. Org. Chem. 1978, 43, 3732–3740.
- 12. (a) Weisburger, J. H.; Weisburger, E. K. *Pharmacol. Rev.* **1973**, *1*, 25–32; (b) Maehr, H. *Pure App. Chem.* **1971**, *28*, 603–636.
- Scott, A. I.; Yoo, S. E.; Chung, S. K.; Lacadie, J. A. Tetrahedron Lett. 1976, 17, 1137–1140.
- 14. Strecker, V. A. Liebigs Ann. Chem. 1850, 75, 27-51.
- To a solution of the hydroxylamine chlorhydrate (10 mmol) and sodium carbonate (10 mmol) in THF/H₂O (20/5 mL), under N₂, was added a solution of halohy-

- drine 1 (10 mmol) in THF (20 mL). The solution was then stirred at 0°C for 1 h and at room temperature for 6 h. The solution was partitioned between H_2O and CH_2Cl_2 , the aqueous layer extracted with dichloromethane. The combined extracts were dried (Na_2SO_4) , filtered and the solvent removed in vacuo. The residue was directly subjected to silica gel column chromatography (EtOAc-petroleum ether 3:2 as eluent) to afford β -halo α -amino esters 2 (R_1 = Me) as a white solid or 2 (R_1 = Et) as a yellow oil.
- For example: **2g**: IR (Nujol): v: 3210–3430, 2230, 1720 cm⁻¹. 1 H NMR (CDCl₃+TFA/250 MHz) δ ppm: 7.40– 7.56 (m, 4H, Ar); 3.84 (s, 3H, CO₂CH₃); 2.30 (s, 3H, CH₃); 5.42 (s, 1H, CH). ¹³C NMR: 128.5, 132.3, 136.5, 139.0 (Ar-ring C); 62.0 (d, ${}^{1}J=157.4$ Hz, CH); 53.8 (q, $^{1}J = 147.4 \text{ Hz}, \text{ CO}_{2}\text{CH}_{3}$; 75.0 (dd, $^{2}J = 5.0 \text{ Hz}, \text{ C(NH)}$); 167.3 (s, CO); 115.5 (s, CN), 20.6 (q, ${}^{1}J$ =126.1 Hz, CH₃). HMRS calcd for C₁₁H₁₂NO₃Cl (M-HCN)^{+•}: 241.0505 found 241.048. Anal. calcd: C, 53.58; H, 4.91; N, 10.38; Cl, 13.17; found: C, 53.62; H, 4.88; N, 10.35; Cl, 13.22. Compound 2k: IR (Nujol): v: 3210-3420, 2220, 1725 cm $^{-1}$. ¹H NMR (CDCl₃+TFA/250 MHz) δ ppm: 7.28– 7.44 (m, 4H, Ar); 3.82 (s, 3H, CO₂CH₃); 2.28 (s, 3H, CH₃); 5.45 (s, 1H, CH)). ¹³C NMR: 128.7, 130.3, 134.5, 138.2 (Ar-ring C); 62.2 (d, ${}^{1}J=157.1$ Hz, CH); 53.6 (q ${}^{1}J = 147.3 \text{ Hz}, \text{ CO}_{2}\underline{\text{CH}}_{3}); 75.2 \text{ (dd, } {}^{2}J = 5.1 \text{ Hz, } \underline{\text{C}}(\text{NH}));$ 167.1 (s, CO); 115.2 (s, CN), 20.4 (q, ${}^{1}J$ = 126.0 Hz, CH₃). HMRS calcd for C₁₁H₁₂NO₃Br (M-HCN)⁺•: 285.0001 found 284.998. Anal. calcd: C, 45.99; H, 4.20; N, 8.98; Br, 25.50; found: C, 45.96; H, 4.18; N, 9.01; Br, 25.47.
- 16. A mixture of β-halo-α-amino esters 2 (10 mmol), powdered NaOH (5 mmol), finely powdered K₂CO₃ (5 mmol), Bu₄NHSO₄ (0.25 mmol) and benzene (60 mL) was stirred efficiently at rt for 8 h. Solid inorganic salts were filtered off, washed with benzene and the solution was concentrated under reduced pressure. The residue was purified by chromatography on silica gel to afford aziridine esters 3 as a colourless oils.
 - For example: **3a**: IR (Nujol): v: 3430, 2240, 1750 cm⁻¹.
 ¹H NMR (CDCl₃/250 MHz) δ ppm: 7.15–7.38 (m, 4H, Ar); 3.92 (s, 3H, CO₂CH₃); 2.32 (s, 3H, CH₃); 4.32 (s, 1H, CH).
 ¹³C NMR: 128.5, 131.1, 135.2, 139.0 (Ar-ring C); 64.0 (d, ¹J=157.4 Hz, CH); 53.6 (q, ¹J=147.4 Hz, CO₂CH₃); 53.0 (d, ²J=5.0 Hz, C(NH)); 163.8 (s, CO); 114.1 (s, CN), 20.6 (q, ¹J=126.2 Hz, CH₃). HMRS calcd for C₁₂H₁₂N₂O₃ (M⁺•): 232.0847 found 232.082. Anal. calcd: C, 62.08; H, 5.21; N, 12.12; found: C, 62.11; H, 5.18; N, 12.09. Compound **3i**: IR (Nujol): v: 3400, 2230, 1740 cm⁻¹.
 ¹H NMR (CDCl₃/250 MHz) δ ppm: 7.25–7.45 (m, 4H, Ar); 3.88 (s, 3H, CO₂CH₃); 2.32 (s, 3H, CH₃); 4.33 (s, 1H, CH), 3.45 (s, 3H, OCH₃). HMRS calcd for C₁₃H₁₄N₂O₃ (M⁺*): 246.1004 found 246.098; (M^{+*}-H₂O): 228.0898 found 228.088.